图形神经网络(GNNS)可以使用深度学习对图进行分析,并在图中捕获结构化信息的结果有希望的结果。本文着重于创建一个小图来表示原始图,以便在尺寸降低的图上训练的GNN可以做出准确的预测。我们将原始图视为接收场的分布,并旨在合成一个小图,其接受场具有相似的分布。因此,我们通过接受场分布匹配(GCDM)提出了图形屈服,该图是通过使用最大平均差异(MMD)量化的分布匹配损耗来优化合成图来完成的。此外,我们证明了GCDM生成的合成图在评估阶段高度概括为各种模型,并且使用此框架可显着提高冷凝速度。
translated by 谷歌翻译
节点之间有序序列的动态图在现实世界的工业应用中普遍存在电子商务和社交平台中。然而,由于数据的时间和结构依赖性和不规则性,因此,对动态图表的表示学习已经提出了很大的计算挑战,防止这些模型部署到现实世界的应用程序。为了解决这一挑战,我们提出了一种有效的算法,有效的动态图学习(边缘),它通过训练丢失选择性地表达某些时间依赖性,以改善计算中的并行性。我们展示了边缘可以扩展到数百万节点的动态图形,数亿个时间事件,实现新的最先进的(SOTA)性能。
translated by 谷歌翻译
我们考虑发现$ k $相关的高斯定向的非循环图(DAG)的问题,其中涉及的图形结构共享一致的因果秩序和支持的支持。在多任务学习设置下,我们提出了$ L_1 / L_2 $ -Regularized最大似然估计器(MLE),用于学习$ K $线性结构方程模型。理论上我们表明,通过利用相关任务利用数据来实现联合估算器可以实现比单独的估计更好的采样复杂性来恢复因果秩序(或拓扑阶)。此外,联合估计器能够通过与一些可识别的DAG一起估计它们来恢复不可识别的DAG。最后,我们的分析还显示了联盟支持恢复的协会的一致性。为了允许实际实现,我们设计了一种连续的优化问题,其优化器与联合估计器相同,并且可以通过迭代算法有效地近似。我们验证了实验中联合估计器的理论分析和有效性。
translated by 谷歌翻译
Medical dialogue information extraction is becoming an increasingly significant problem in modern medical care. It is difficult to extract key information from electronic medical records (EMRs) due to their large numbers. Previously, researchers proposed attention-based models for retrieving features from EMRs, but their limitations were reflected in their inability to recognize different categories in medical dialogues. In this paper, we propose a novel model, Expert System and Attention for Labelling (ESAL). We use mixture of experts and pre-trained BERT to retrieve the semantics of different categories, enabling the model to fuse the differences between them. In our experiment, ESAL was applied to a public dataset and the experimental results indicated that ESAL significantly improved the performance of Medical Information Classification.
translated by 谷歌翻译
Deep learning models can achieve high accuracy when trained on large amounts of labeled data. However, real-world scenarios often involve several challenges: Training data may become available in installments, may originate from multiple different domains, and may not contain labels for training. Certain settings, for instance medical applications, often involve further restrictions that prohibit retention of previously seen data due to privacy regulations. In this work, to address such challenges, we study unsupervised segmentation in continual learning scenarios that involve domain shift. To that end, we introduce GarDA (Generative Appearance Replay for continual Domain Adaptation), a generative-replay based approach that can adapt a segmentation model sequentially to new domains with unlabeled data. In contrast to single-step unsupervised domain adaptation (UDA), continual adaptation to a sequence of domains enables leveraging and consolidation of information from multiple domains. Unlike previous approaches in incremental UDA, our method does not require access to previously seen data, making it applicable in many practical scenarios. We evaluate GarDA on two datasets with different organs and modalities, where it substantially outperforms existing techniques.
translated by 谷歌翻译
The development of social media user stance detection and bot detection methods rely heavily on large-scale and high-quality benchmarks. However, in addition to low annotation quality, existing benchmarks generally have incomplete user relationships, suppressing graph-based account detection research. To address these issues, we propose a Multi-Relational Graph-Based Twitter Account Detection Benchmark (MGTAB), the first standardized graph-based benchmark for account detection. To our knowledge, MGTAB was built based on the largest original data in the field, with over 1.55 million users and 130 million tweets. MGTAB contains 10,199 expert-annotated users and 7 types of relationships, ensuring high-quality annotation and diversified relations. In MGTAB, we extracted the 20 user property features with the greatest information gain and user tweet features as the user features. In addition, we performed a thorough evaluation of MGTAB and other public datasets. Our experiments found that graph-based approaches are generally more effective than feature-based approaches and perform better when introducing multiple relations. By analyzing experiment results, we identify effective approaches for account detection and provide potential future research directions in this field. Our benchmark and standardized evaluation procedures are freely available at: https://github.com/GraphDetec/MGTAB.
translated by 谷歌翻译
As one of the prevalent methods to achieve automation systems, Imitation Learning (IL) presents a promising performance in a wide range of domains. However, despite the considerable improvement in policy performance, the corresponding research on the explainability of IL models is still limited. Inspired by the recent approaches in explainable artificial intelligence methods, we proposed a model-agnostic explaining framework for IL models called R2RISE. R2RISE aims to explain the overall policy performance with respect to the frames in demonstrations. It iteratively retrains the black-box IL model from the randomized masked demonstrations and uses the conventional evaluation outcome environment returns as the coefficient to build an importance map. We also conducted experiments to investigate three major questions concerning frames' importance equality, the effectiveness of the importance map, and connections between importance maps from different IL models. The result shows that R2RISE successfully distinguishes important frames from the demonstrations.
translated by 谷歌翻译
Compressed videos often exhibit visually annoying artifacts, known as Perceivable Encoding Artifacts (PEAs), which dramatically degrade video visual quality. Subjective and objective measures capable of identifying and quantifying various types of PEAs are critical in improving visual quality. In this paper, we investigate the influence of four spatial PEAs (i.e. blurring, blocking, bleeding, and ringing) and two temporal PEAs (i.e. flickering and floating) on video quality. For spatial artifacts, we propose a visual saliency model with a low computational cost and higher consistency with human visual perception. In terms of temporal artifacts, self-attention based TimeSFormer is improved to detect temporal artifacts. Based on the six types of PEAs, a quality metric called Saliency-Aware Spatio-Temporal Artifacts Measurement (SSTAM) is proposed. Experimental results demonstrate that the proposed method outperforms state-of-the-art metrics. We believe that SSTAM will be beneficial for optimizing video coding techniques.
translated by 谷歌翻译
We propose a distributionally robust return-risk model for Markov decision processes (MDPs) under risk and reward ambiguity. The proposed model optimizes the weighted average of mean and percentile performances, and it covers the distributionally robust MDPs and the distributionally robust chance-constrained MDPs (both under reward ambiguity) as special cases. By considering that the unknown reward distribution lies in a Wasserstein ambiguity set, we derive the tractable reformulation for our model. In particular, we show that that the return-risk model can also account for risk from uncertain transition kernel when one only seeks deterministic policies, and that a distributionally robust MDP under the percentile criterion can be reformulated as its nominal counterpart at an adjusted risk level. A scalable first-order algorithm is designed to solve large-scale problems, and we demonstrate the advantages of our proposed model and algorithm through numerical experiments.
translated by 谷歌翻译
Witnessing the impressive achievements of pre-training techniques on large-scale data in the field of computer vision and natural language processing, we wonder whether this idea could be adapted in a grab-and-go spirit, and mitigate the sample inefficiency problem for visuomotor driving. Given the highly dynamic and variant nature of the input, the visuomotor driving task inherently lacks view and translation invariance, and the visual input contains massive irrelevant information for decision making, resulting in predominant pre-training approaches from general vision less suitable for the autonomous driving task. To this end, we propose PPGeo (Policy Pre-training via Geometric modeling), an intuitive and straightforward fully self-supervised framework curated for the policy pretraining in visuomotor driving. We aim at learning policy representations as a powerful abstraction by modeling 3D geometric scenes on large-scale unlabeled and uncalibrated YouTube driving videos. The proposed PPGeo is performed in two stages to support effective self-supervised training. In the first stage, the geometric modeling framework generates pose and depth predictions simultaneously, with two consecutive frames as input. In the second stage, the visual encoder learns driving policy representation by predicting the future ego-motion and optimizing with the photometric error based on current visual observation only. As such, the pre-trained visual encoder is equipped with rich driving policy related representations and thereby competent for multiple visuomotor driving tasks. Extensive experiments covering a wide span of challenging scenarios have demonstrated the superiority of our proposed approach, where improvements range from 2% to even over 100% with very limited data. Code and models will be available at https://github.com/OpenDriveLab/PPGeo.
translated by 谷歌翻译